IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

A quasiclassical analysis of second-harmonic generation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 28 3439
(http://iopscience.iop.org/0305-4470/28/12/017)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 00:49

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen. 28 (1995) 3439-3451. Printed in the UK

A quasiclassical analysis of second-harmonic generation

R F Alvarez-Estradaj, A G6émez Nicolaf, L L Sénchez-Soto} and A Luis}

} Departamento de Fisica Teérica I, Facultad de Ciencias Fisicas, Universidad Complutense,
28040 Madrid, Spain

} Departamento de Optica, Facultad de Ciencias Ffsicas, Universidad Complutense. 28040
Madrid, Spain

Received 8 November 1994, in final form 28 March 1995

Abstract. We investigate a quantum two-oscillator model for second-harmonic generation. The
total Harniltonian is the sum of two commuting Hamiltonians with eigenvalves Eg and Eip. The
exact determination of these eigenvalues is studied using tridiagonal matrices. We present two
general equations in the quasiclassical regime yielding the largest &, for 2 given Ep and a
representation for both eigenvalues in terms of an additional quantum number. Some numerical
analysis shows that both equations are fairly consistent for suitably large quantum numbers with
the exact quantum results. An approximate analytical expression for the wavefunction is also
given.

1. Introduction

Second-harmonic generation is perhaps the simplest nonlinear optical process. Classically,
it corresponds to the generation of a field at frequency 2w (second-harmonic mode) when an
intense pump field of frequehcy  (fundamental mode) propagates in a nonlinear medinm.
This problem can be handled in a closed analytical way describing the possibility of complete
energy transfer into the second-harmonic mode [1, 2].

For quantom fields, this process can be envisioned as two identical photons of frequency
w coalescing within the medium to form a single photon of frequency 2e, which can be
described by the effective Hamiltonian

H = hodla + 2hob'b + ng(bla® + ba*z) (1.1

where a and & are the annihilation operators of the fundamental and second-harmonic mode,
respectively, and the constant g describes the coupling between modes.

Unfortunately for this quantum Hamiltonian the dynamics is a touchy business. Exact
solutions were given recently in the framework of the algebraic Bethe ansatz [3], but direct
application of them to the problem at hand seems rather difficult [4]. The parametric
approximation in which the pump depletion is neglected (i.e. it is treated as a classical field
of constant amplitude) is often used [5-8], as well as numerical approximations [9-11].
Irrespective of the approach chosen, the quantum fluctuations prevent the complete transfer
of energy into the second harmonic and the solutions become oscillatory. Moreover, this
model can exhibit a rich spectrum of non-classical features such as photon antibunching [12],
squeezing [13, 14], or collapses and revivals [15]. In fact, it bas recently been found that the
fundamental mode evolves into a superposition of macroscopically distinguishable states or
cat states [16-18].
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The aim of the present paper is to study some asymptotic behaviours of the dynamics
described by the Hamiltonian (1.1). The spectrum of the interaction part of the Hamiltonian
is analysed numerically and an asymptotic formula for the largest eigenvalue, when the
number of photons is high enough, is obtained. The numerical eigenvalues are used
to study the time evolution of the second-harmonic mode, which displays a physically
interesting behaviour: a kind of collapse~revival phenomenon. We employ the quasiclassical
quantization rules to confirm the rich dynamical features of the model. Specifically,
these rules yield an analytic representation, via elliptic functions, for the spectrum of
the interaction Hamiltonian. The consistency of such a representation with the numerical
analysis and with the asymptotic formula for the largest eigenvalue is fully established.

We believe that the various formulae mentioned above for the spectrum of the
Hamiltonian may be of great ntility in further analysis of second-order phenomena.

2. Quantum dynamics of the second-harmonic generation

As we have mentioned, second-harmonic generation is described by the Hamiltonian

H = Ho+ Hu @1
with

Hy=hodla+2ob's  Hi =he(b'a® + bal’). 2.2)

By using the standard bosonic commutation relations ({a,a'] = I, [b,b1] = I,
[a, 6] = 0) it is straightforward to check that

[Ho, Hin) = RPwg[ala + 25'h, bla® + ba'?]
= R2wg(~2a%b! + 227" +2ba’” — 2bal") = 0 (2.3)

so, both are constants of motion. This allows us to factor out exp(—iHyt/A) from the
evolution operator and drop it. The common eigenstates of Hy and Hiy,, with eigenvalues
Eq =hewN and E;;; = hgA, respectively, are characterized through

IN,AY = ) {na,m|N, &Y |ng, np) @24
n,Iﬂjz?:N
with
pitegita
l"‘av nb) = m’oi 0) (2'5)
where |0, 0} is the vacuum state for both modes and n,, np = 0, 1, .... In this Fock basis,

H;y is non-diagonal. However, since n, + 2n, = N = constant, Hy splits the field space
into orthogonal spaces that have [N /2] + 1 components, where [N /2] means the integer
part of N/2. Thus, for a given N we can relabel the states (2.5) as

|na;nb) = |N _2k! k) (26)

which form a complete set, and Hj, is represented in this latter basis by the tridiagonal
matrix of order ([N /2] + 1) x ([N/2] + 1} [15]

0 Co 0 .
[#)] 0 C] 0
Hu=hg| o @7

g 0 o
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where

=k + DN — 2k)(N — 2k — 1). ' 2.8

It is easy to check that due to the properties of tridiagonal matrices, the eigenvalues
A are distributed symmetrically with respect to zero, with one eigenvalue equal to zero if
there are an odd number of them.

The adoption of the Fock number-state basis does not accord well with a realistic
representation of coherent laser light. Later we shall work with coherent states, that are
expressed as number state superpositions. However, to start with let us assume that at ¢t = 0
the system is in the state [N, 0). To find the state evolution, we need the matrix elements
of the evolution operator

Crna(t) = (N — 2k, k| exp(—iHw? /DN, O) - (29
which can be written as
w2 .
Cralt) = Y e MU, UG, (2.10)
i=0
where A; = Ay, ..., Anyz are the eigenvalues and U is the unitary mairix that diagonalizes

the interaction Hamiltonian matrix. If the eigenvalues are sorted from the lowest to the
highest values, we have the symmetry relation [19]

Ui Vo, = (— 1) Uk, w21~ U2y~ (2.11)

which makes the coefficients Cy ; real when k is even and imaginary when & is odd.

Many authors have carried out the diagonalization of Hi, numerically. However, we
wish to draw attention to one important point which does not seem to have been stated in
previous works on the subject: the largest possible eigenvalue of Hj, for a fixed N follows
a power law of the form (when N is high enough)

SR o
Amax BJGN' . (2.12)
This has been carefully checked in all our numerical computations and can be recovered
by a simple argument as follows: for N > 1, the dominant contributions can be expected
to correspond to large values of both n, and n,. Then both modes may be expected to.be
close to the classical limit in which the associated operators a and b may be approx:mately
replaced by classical c-numbers « and £, in such a way that

N =t 2% A =208, (2.13)
Then } )

AN —2898. | ) (2.14)
For a fixed N, the maximum eigenvalue occurs when dA /df = 0, which immediately gives

o = 2(N/6)/? B = (N/6)}/* (2.15)

from which the power law (2.12) follows. In numerical computations this scaling law works
quite accurately even when N = 10 (see table 1).
The important scaling law (2.12) will be confirmed again, in a different setting, in (3.11),
and it will play an essential role in the analysis of the quasiclassical quantization rules and
- the discussion about them.
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Table 1. Comparison between the exact maximum eigenvalue of Hiy, for fixed n and the bound
obtained using (2.19).

N AEE) AGPPOY polative emror %

10 16.613 17213 361
20 47838 48686 L77
30 88404 89442 117
40 136307 137.706 0.88
50 19L109 192450  0.88
60 251.513 252982 058
70  317.208 318794 050
8¢ 387.796 389491 044
90 462959 464758 039
160 542438 544331 035

The typical conditions for second-harmonic generation are a coherent state for the
fundamental mode and the vacuum for the second-harmonic mode. Thus, we suppose
the initial state of the form

[¥ (@) =>_ byIN,0) (2.16)
where =0
—fel2/2 a’N
by = e/ Wil (2.17)

is the Poissonian weighting factor of the coherent state |} and {x|? is the mean photon
number, With this initial condition the resulting state is
o IV

W) =D by Y Cnat)IN — 2k, k) (2.18)

N=0 k=0
with Cy (1) given by (2.10). This series has been evaluated numerically in a number of
papers showing a clear oscillatory behaviour that decays faster for higher n,, so here we
do not intend to give an extensive discussion of this problem. Rather, we wish to give an
approximate analytic expression for the wavefunction. To this end, let us now expand in
(2.16) the state |N, 0) in the basis |N. A)" of eigenstates of Hiy

/2] ) ]

IN,O) =D a;nIN, A . _ (2.19)
=0

The distribution probabilities |aj.N|2, which Indicate the overlap between the state |V, 0)
and the eigenstates |, A7}, can be studied numerically. The central point, as discussed in
detail in [15], is that for & high enough and N = 2k (even) this decomposition can be well
approximated by considering only three eigenstates: zero and two of them (A and —A;)
distributed symmetrically with respect to zero and of maximum overlap, obtaining

[V (0)) = |2k, 0) & ag.ax|2, OY + o 2|2k, Aq) 4 a1 2212k, — A1)’ (2.20)

where the coefficients of |2k, A1} and |2k, —A,)’ are the same by symmetry. The time
evolution of this state is

[W2(6)) = a2k 2k, O + a1,z e84V 2k, 1) + @y e €842, — A1) 221)

Analogously, when N = 2k + 1 (odd) we can accurately approximate the expansion by the
two symietric eigenvalues (A; and —A») of maximum overlap
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[¥241(0)) = |2k + 1, 0) = @z ap4112k + 1, A2 + G2 p1 |2k + 1, =AY (2.22)
with a time evolution _
a4 () = @2 2041 €78 2k + 1, Ag) + ar.2ear €827|2k + 1, =AY (2.23)
The time evolution of the system is
o o0
() = badWra() + ) baeyt | (8)). (2.24)
k=0 =0

‘We can now give an approximate expression for the evolution of the second-harmonic field

as
o0

(o} =3 bl [2a0.20a] (2K, OIbTBI2k, Ar) cos(gArt)
o i 2domal 5 (2K, OBTB|2k, — A1) cos(gAur)
+2a%,, (2k, A1[bTBI2k, —A1) cos2g ) + ay {2k, 0ib1bI2k, O
+a'y (2K, M1IbTBI2E, AgY + a2k, —Ar)B1B|2k, —A1)']

o0
+ 3 bR 2825 (2k + 1, AalbTB[2k + 1, —Ag) cos(2gAnt)

k=0
a2 412K + 1, AalBlBI2k + 1, Ay
Fe 1 {26+ 1, —AalbTb2k +1, —A) ] (2.25)

Here the time evolution is proportional to the cosines of gA ¢, 2gA 1t and gAaz. The pres-
ence of these different frequencies implies the impossibility of monotonic growth of the in-
tenstity as in the classical case, and clearly shows the oscillatory character of the quantum so-
lution, interference among these components appears to be responsible for these oscillations.

Mareover, the existence of small oscillations around some stationary value has been
observed numerically for large times with significant decreases and oscillations at particular
times, showing a kind of collapse-revival behaviour. The explanation of this behaviour
is now straightforward by means of similar arguments to those for the Jaynes~Cummings
model [20]. Using the actual values of the eigenvalues, we have plotied the evolution of
the second-harmonic mode in figure 1, finding very good agreement with the numerical
computations.

758 -

Figure 1. Plots of the mean photon

13 e e R . number in the second-harmonic

H ’ . ':: . . mode versus r = a1, for rlla = 4

. , . . , L (broken curve) and », = 16 (full

00 15 3D 45 60 75 90 105 120 135 150 curve). In both cases we have used
T the approximation (2.25).
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3. Quasiclassical evolution of the second-harmonic mode

3.1. Canonical variables

We shall introduce the Hermitian operators x;, p;(j = 1, 2) through

a=_|— + b= [—x +-—°i (3.1
@ .
x1 J_p1 7 2 \/_pz

and so on for a! and . One has [x;, p;] = ik and all other commutators vanish. We
can always set p; = —ihd/9x;. Note that there is no compelling reason to treat x; as
position operators for photons in ordinary space. Rather, x; and p; should be identified as
proportional to the amplitudes of the two quadrature phases of the electric field, which may
be measured experimentally by means of optical homodyne detection [21].

In order to approach the classical limit 2 — O properly, we shall introduce a new
coupling constant f defined by

hg = —2R¥2F , (3.2)
By substituting in the Hamiltonian of the system one gets

2 2
73 (Zw) 3
= — — —h
Hy 2 + 2 1+ 5 + > (3.3)

Hin = — f[(20) (o2} — w_lp 2+ (2w) Pxip1+ padpa].
We shall consider the classical limit of this quantized model. Then, the operators x; and

p; become classical (¢ numbers) commuting variables we shall denote by x; and p;..
Consequently the operators in (3.3) become the classical Hamiltonians

2 2
_ Pigc P | QP
Hoe == "'2 R S I (34)
Hire = — F [Qe)(0x} — 07 pL )32 + (20) 72251 propa e

respectively. One can easily check that the classical Poisson bracket of Hy. and Hip
vanishes.

‘We shall obtain some approximaie analytical representations for the eigenvalues Eg .-
and Eiy, in the quasiclassical limit (the subscript ¢ will remind that one is calculating only
in this limit}. In so doing, use will be made of the generalization of the Bohr—Sommerfeld
quantization rules due to Einstein [22], Brillouin [23] and Keller [24]. We shall Limit
ourselves to giving the quasiclassical representations which yield Ep . and Ej, . implicitly,
and to study numerically their consistency with the results of the exact quantum analysis.
This quasiclassical analysis has its own interest, as it is a highly non-trivial application of
the quantization rules and may be vsefid for further studies of the system at hand,

3.2. Classical solutions for momenta and their structure

‘We start by setting

HO.c = ED.c Hint.c = Lint.c - (3'5)
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Equations (3.5) constitute a system that enables to determine py ¢ and pa. in terms of x;
and x,. Notice that p; . is obtained by solving a quartic equation. One finds

Co + pAV2x3 72
nelo,p)=0c [%}
2(xf +x5)
@) T fra(e)”? oo
) x2(2e)'? ]
g, p) = ¢, 0 —B
P2.clo, p) rre@ ) [ piclo, p) &
where o = &, p =, and
Co = Bix? + Bo f 1 (2w) 3 A=CC.
1/2 112 1/2
Ce=B+ E%Q_‘”g__sz + 20 [1 + (xz) ] B, 37
fx 1 fx x

By = 2Ep — 0*x% — Qw)*x} By = Epec + foa)xtx; .

For a given Ep. > 0, a necessary condition for the existence of allowed classical
“trajectories is By 2 0 for any xy, x2, as (3.5) and (3.7) show. Notice that B; = 0 (which
represents an ellipse in the {xq, x;) plane) implies that py (o, p) = p2.(0, p) = 0 and, for
the sake of consistency, By = 0 also.

For classical trajectories to exist at (xi, x2) p1 . should be real and non-negative and
p < By. No further conditions on pa . are required.

For a given Eg (> 0) and a sunitable Ejy (< 0), figure 2 displays in the (x1 Xxz)-plane;

(1) The region B; > 0 (that is, the interior of the ellipse B; = 0).
(i) The curves C;. =0and C_ =0.
(iif) The curve By = 0.

Except for some specific features, the detalled form of those curves is not very relevani.
Each one of the curves (i} and (iii) is always symmetric about the x.-axis. The interest in
curve (iti} will be appreciated scon.

(=)

y Daz(+)

X1

B1=0

Figure 2. The classically allowed repions R, R_ are limited by the curves C. = 0 and
Cy = 0. The curve B3 = 0 (indicated in the figure as dotted) always lies below C_ == 0 and
above Cy = 0 and it intersects the ellipse By = 0 at the points D;(+), D2{+) (right branch)
and Dy (—) and D2(—) (left branch).
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The solutions of the system

By =0 By =0 . . (3.8)
comrespond to the four points Dy(4), Di(+), Di(—) and Da(—) in figure 2. The system
(3.8) yields
_ %x _ Einl.c =

2020 dfw(2w)

A study of the explicit solutions of (3.9) is now in order. The main conclusions may be
summarized as follows.

First, the intersections of By = 0 and B, = 0 give rise to four different points {as in
figure 2) only if

x3 0. (3.9)

16 f?
E} . < EEE&G. (3.10)

The points Di{+) and Di(+) coincide with each other (as do the symmetric points
Dy(—) and D;{—) with each other) when

16 2,

Efe=7"=E, G.11)
and, in this case, the double solution of (3.9) yields for D;(+) and D(+)
1 Eint.c 173

The system (3.8) has no acceptable solution if EZ, . > %gﬁ'g‘c. In such a case, the
intersection of the ellipse By = 0 and the curve Bz =0 is empty.

For Ejy. fulfilling (3.10), the allowed classical trajectories correspond to points inside
the regions Ry, R_ limited by Cy = 0 and C_ =0, where A = 0. Note that R, is obtained
through reflection symmetry from R_ with respect to the x;-axis.

An important point is that the condition (3.11} coincides precisely with the scaling law
(2.12) when one uses Eo. =FiwN and Eipc = —2Y28%2 f A pax.

We shall now concentrate on the (x, xp)-plane and, in particular, on the domain
Ry (with x; > 0} inside of which A > 0 (with B, < 0, which is not an essential
restriction). Then, we consider three additional copies of them. Altogether, they define a
four-sheeted (xy, x3) space (the so called covering space [24]). We shall use (o, p) and
P1.colo, p) to characterize and distinguish these sheets. We shall denote by C_(o, p) = 0
and C, (o, p) = 0 the curves in the sheet (o, p) along which A = 0, and by Ry(c, p) the
domain which is enclosed by these two curves.

A careful study of py.(o, p) and pa (o, p) in the various sheets has been undertaken
in order to connect the latter among themselves whenever possible in such a way that these
functions vary in a continuous way. In other words, these functions become univalued in
the covering space. The results of such an analysis are the following:

(i) The two domains R.(+, -} and R.(+,~—) can be joined across C_{+4,-+} =
0,C_(+,—) = 0 and across Cy.(+,+) = 0, C:(+, =) = 0. The vnion of R,.(+,+)
and R (+, —) will be named R, (+).

(ii) The same holds true for the domain R.(—,+) and Ry(—, ) across C_{—,+) =
0,C_(—,—) =0 and across C.(—,+) = 0, C4(—, =) = 0. The union of R .{-,+)
and R.(—, —) will be denoted by R, (). Both R.(+) and R.{—) are displayed in
figure 3(a).
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Figure 3. (@) The regions Ry (—) (upper) and R..(+) (lower) are displayed. The notation for
the different curves is as follows: 3: Cof—, 3 =0;4: Co{—, +)=0; 5. C_(=, =) = &
Ci—, P =6T Co(+ ) =08 C_(+.4) =0; 9 Co(+, =) =0 10: Cp{++,+) =0
The connections between Ry (+) and Ry (~) across the curves Bz = 0 (indicated as dotted and
unnumbered) are also given. The closed curve I is also displayed. The symboals a, b, ¢, d
indicate how the various parts of 'z are connected to one another. (b} and (¢) display the
topological structure of the covering space Ri(+) U Ry(—). Ry(+) and R.(—) are joined
across 82 = 0 (also drawn as dotted and unnumbered) as indicated in the main texe. Notice that
1" is not continugusly connected to 2" neither is 1/ to 2.

(iii) Ry (+) and R,(—) are continuously connected (and, hence joined) to each other
across the curves B; = 0 in Ry (+,—} and B; = 0 in R (—, ~) (in both of which
Pi.c = 0). Specifically, the regions 17 and 2’ of sheets o = —p =+ and o =p = —,
respectively, should be joined to each other, and similarly, the regions 1’ and 2" of
sheets 0 = —p = + and ¢ = p = —, respectively, should be continuously connected
to each other (see figure 3(aq)). In this way, p;. is guaranteed to vary continuously
whenever p; . vanishes.

We call Ry (+)U Ri(—) the union of both R (+) and R, (—} across the curve By = {.
Its topological structure is shown in figures 3(b) and (¢). The four-sheeted (x, x;) space
with connections among the various sheets is the covering space for carryving out the
semiclassical quantization of the system, which we shall investigate in the next section.

We emphasize that the various connections among different sheets as displayed in
figure 3 are dictated by Keller’s general prescription. We also stress that the developments of
this subsection are technically unavoidable in order to properly formulate the quasiclassical
quantization rules.

3.3. Quasiclassical quantization rules

LetT; (§ = 1, 2) be two suitable closed and topologically independent paths (that is, none of
them can be continuously deformed so as to coincide with the other one) in R (<) UR,{—).
A typical choice for I'; and I'y is displayed through figures 3(a) and 4. It will be assumed
that I'; cannot be infinitesimally close to D;(4) or D1(—). Such closed curves are described
by the equations y;{xy, x2) = 0.

We are now ready to apply the quantization rules in order to provide the implicit
quasiclassical analytical formulae for Eq . and Ej, ., as announced before.
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Figure 4. The closed curve I'; is displayed using
the same notation as in figure 3{e). Notice that
r Dat+} for simplicity curves 4 and 8 are omitted, I'y
1 LTt passes by both Dy (+) and Da(+). A part of Ty
lies in the region 1" in the sheet ¢ = —p =
+ (where p2. > 0), while the other par is
contained in region 2" of sheet ¢ = p = —
C-+-)=0 {where p2. < O)..

The quantization rules read as
?g (Pr.cdx; + pacdxs) = 2wk (ﬂj + ﬂ) (3.13)
T 4

where py . and ps are given through (3.6) and the integrations extend along the whole
closed paths I;. In turn, n; are arbitrary positive integers and u; are fixed integers called
Maslov indices {or, more generally, Berry phases).

It is particularly convenient to choose I'; so that ¥;{(x;, x3) = 0 is precisely By = 0.
Equations (3.6) then imply that p; . = 0 along I'y, while ps, = :I:B]‘/ % in the parts of '
lying in 17, 27, respectively.

By using y = x} as integration variable, the left-hand side of (3.13) for j = 1 becomes
an elliptic integral over y (Ejy. < 0):

@ g w? E? _WPfm
/ —Z|:Eo.c3’2—“—y3— ‘} 5 (m+ 51 s
Y

(1) y3 2 szU _Eint.c
where
E.
W B 3.15
with xé’" the two positive solutions of (3.9} which corresponds to D,(+), & = 1, 2. Notice

that x{" > x{?, so that y@ > y®,

We argue that i) = 0 in (3.14). In fact, when (3.11) holds, one finds that

M=y 9 Ee 17 (3.16)
=Y = T ey :
and, moreover, that the square root in the integrand of the left-hand side of (3.14) vanishes.
For consistency, the right-hand side of (3.14) requires n; = 0 and hence gy = 0. When
(3.10) holds, (3.14) is valid for a finite set of non-negative values for the integer ny
(with B = 0)
We introduce the dimensionless variables z, e, and « through

4/ Eoc 7 E(}c = Emt cwsl2
@ z Y= (1)2 = fE 3/2 .

Xz = (3.17)

Then, equations (3.14), (3.15) and (3.9) become, respectively,

_ @ 3 172
eN [ du (u ~Z ez) (3.18a)

ull
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S R Figure 5.  Plot of the values of the
0.0 ——>r— — right-hand-side of (3.18a) for N = 56
012834567 8 91011121314 computed numerically versus the possible
quantum number {m integer values of the quantum number n;.
—e
u = . (3.18h)
N2z ®
3 Z [
7= ———==0. {3.18¢)
2. 42

Notice that the condition e? = 1§ corresponds to (3.11) and that z( and z® are the two

positive solutions of the cubic equation for z.

We can now compare with the exact solutions of the quantum Hamiltonian, This can
be accomplished upon plugging the exact eigenvalues Ey and Ej, obtained in section 2
into (3.18a), identifying approximately Ey and Ej, with Ey. and Eiy . for suitably large
N (say, N = 12) (note, however, that in the visible range this corresponds to a typical
intensity of 3 x 10~ W c¢m™2) and evaluating numerically the integral in (3.18a) in order
to see whether it equals an integer, namely, the quantum number r,. In figure 5 we can
see this fitting for N = 56. One may then conclude that the quasiclassical representations
are consistent with the results obtained for the exact quantum eigenvalues provided that
N 2 12 with an emor not greater than 2%,

An interesting consequence is then that (3.182) yields the eigenvalue Ey, in terms of
Ey =hwN and n; in the quasiclassical limit.

A qualitative study of the left-hand side of (3.18a) for j = 2, using the values of
p1clo, p), p2.c.(o, p) seems to indicate that the former is different from zero, as it should
be. As yet, we have not found any special curve I, such that it simplifies to any previously
known (elementary or non-elementary) integral. Anyway, it is less relevant in practice than
the integral for j = I, which already yielded the relationship among Ey, Ej,; and ny.

Finally, we shall provide some approximate formulae for the wavefunctions in this
quasiclassical regime. We anticipate that our results have a rather limited scope.

In fact, while reliable one-dimensional quasiclassical wavefunctions are well known
in all regions, elaborate formalisms yielding practical wavefunctions in more than one
dimension appear to be lacking (leaving aside some mathematical studies which seem to be
rather difficult to apply [25-28]).

The univaluedness and the connection formulae for the quasiclassical wavefunction in
one dimension have been well understood and controlled. The univaluedness amounts to
the quasiclassical quantization rules, which yield the eigenvalues in this approximation.
Unfortunately, for systems in two or more dimensions, like the two-oscillator model treated
in the present work, the situation is far more complicated and, hence, the available techniques
have a more limited scope. In this case a crucial matter, namely, the generalization of the
connection formulae, still appears to stand as an open problem.
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Let the wavefunction ¥(x1,x;) be a common eigenfunction of both operators Hy and
Hint

Hyyr = Egyr Hi = Ein ¥ (3.19)

In what follows, let A denote a given point on any of the curves C. =Q or C_. = 0.
Also, let X = (xy,x2) be a generic point in the sheet (o, p) inside R,.(z,p), and 7; 2
suitable open curve which starts at A and ends at X and lies entirely inside R.(o, p) in the
(o, p} sheet.

In a rather direct analogy with the well known WBK solution in one spatial dimension,
we can write the following approximate formula for v inside R..(c, p):

L eX
¥(x1, x2) & /i (x1, x2) exp [%j; [p1.c(e, p) dxt + pac(o, p) dxz]} (3.20

where g2;(x1, x2) = g is a real non-negative function.
In order to characterize go; let us look for the solutions of (3.19) in the form

/ i(x1, x2) exp {%Sc(xl , xz)] (3.2

where S, is real and remains finite as & — O. After replacing (3.21) in (3.19), separating real
and imaginary parts and letting & — O, one finds that p; . = 85,/0x; and py. = 85./0x2
satisfy (3.5). With the same substitutions, the right-hand sides of (3.6) allow us to write

X
S.= L (P16, 5y + paclo, p) dxs] (3:22)

the integral being performed along 7;. The above separation between real and imaginary
parts also yields the following system that characterizes g;(x;, x2):

] 35, 8 a5,
— PR — § — =0 . .
ax1 (ga, 8x|) + 89 (p, Bxg) (3.23a)
NG 3 EXY ; 8S. 3 3 3
5 0 (L I%)_ B n [2(08), 0 (,05)]
w Oxp ax) S dx2 20 | Bx axs 9xn ax;
(3.235)

Notice that {3.23a)} appears to be a continuity equation in (x1, x2)-space. g; could eventually
be interpreted as some sort of probability density (but beware that x; and xs do not represent
position for phetons in ordinary space).

The solutions of (3.19) when X lies outside both R, and R_ (in any sheet) can also
be written immediately, in a formal analogy with (3.20). Such a solution turns out to
be rather difficult to analyse, depending on the signs of the imaginary parts of both p; .
and pa.. The possibility of tunnelling effects between R, and R_ (in each sheet), which are
allowed in principle, adds further difficulties. A detailed analysis of how the wavefunction
inside R,(c, p) given in (3.20) would be connected to the quasiclassical solution outside
Ry(c, p) definitely lies outside the realm of the present paper. Actually it would call for
elaborate formalisms yielding WBK solutions and their connection formulae in more than
one dimension, which appear to be lacking at present, as commented above.

To finish, we notice that {3.20) suffices to derive the quantization rule (3.13), which
provides a clear check of consistency for the former. In fact, by choosing a suitable closed
curve in the four-sheeted covering space and by imposing single-valuedness to (3.20) and
by following Keller's argument, one arrives at (3.13).
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4. Conclusions

‘We have examined the asymptotic behaviour of second-harmonic generation. The quantum
dynamics of the model has been studied resorting to the technique of tridiagonal matrices.
The important point is the largest possible eigenvalue for the interaction Hamiltonian scales
as N2, where N is the total photon number.

In the guasiclassical regime, we have derived two general equations yielding the
spectrum of the problem. In this context, second-harmonic generation is a highly non-
trivial application of the quasiclassical quantization rules, since the covering space of the
problem shows an intrigning topological structure. These equations are fairly consistent for
suitably large quantum numbers with the exact guantum results. We have also provided an
approximate analytic expression for the wavefunction of the system.
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