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Abstract. We investigate a quantum two-oscillator model far second-harmonic generation. The 
total Hamiltonian is the sum of two commuting Hamiltonians with eigenvalues Eo and E,,,. The 
exact determination of these eigenvalues is studied using vidiagonal matrices. We present two 
general equations in the quasiclassical regime yielding the largest E,,, for a given Eo and a 
representation for both eigenvalues in terms of an additional quantum number. Same numerical 
analysis shows that both equations are fairly consistent for suitably large quantum numbers with 
the exact quantum results. An approximate analytical expression for the wavefunction is also 
given. 

1. Introduction 

Second-harmonic generation is perhaps the simplest nonlinear optical process. Classically, 
it corresponds to the generation of a field at frequency 2 0  (second-harmonic mode) when an 
intense pump field of frequency 0 (fundamental mode) propagates in a nonlinear medium. 
This problem can be handled in a closed analytical way describing the possibility of complete 
energy transfer into the second-harmonic mode [1,2]. 

For quantum fields, this process can be envisioned as two identical photons of frequency 
w coalescing within the medium to form a single photon of frequency h, which can be 
described by the effective Hamiltonian 

(1.1) H = h a t ,  f %lobib f hg(btaz f bat2) 

where a and b are the annihilation operators of the fundamental and second-hannonic mode, 
respectively, and the constant g describes the coupling between modes. 

Unfortunately for this quantum Hamiltonian the dynamics is a touchy business. Exact 
solutions were given recently in the framework of the algebraic Bethe ansatz 131, but direct 
application of them to the problem at hand seems rather difficult [4]. The parametric 
approximation in which the pump depletion is neglected (i.e. it is treated as a classical field 
of constant amplitude) is often used [5-81, as well as numerical approximations [9-111. 
Irrespective of the approach chosen, the quantum fluctuations prevent the complete transfer 
of energy into the second harmonic and the solutions become oscillatory. Moreover, this 
model can exhibit a rich spectrum of non-classical features such as photon antibunching [12], 
squeezing [13,14], or collapses and revivals [15]. In fact, it has recently been found that the 
fundamental mode evolves into a superposition of macroscopically distinguishable states or 
cat states [16-181. 

03054470/95/123439+13$19.50 @ 1995 IOP Publishing Ltd 3439 
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The aim of the present paper is to study some asymptotic behaviours of the dynamics 
described by the Hamiltonian (1.1). The specmm of the interaction part of the Hamiltonian 
is analysed numerically and an asymptotic formula for the largest eigenvalue, when the 
number of photons is high enough, is obtained. The numerical eigenvalues are used 
to study the time evolution of the second-harmonic mode, which displays a physically 
interesting behaviour: a kind of collapse-revival phenomenon. We employ the quasiclassical 
quantization rules to confirm the rich dynamical features of the model. Specifically, 
these rules yield an analytic representation, via elliptic functions, for the spectrum of 
the interaction Hamiltonian. The consistency of such a representation with the numerical 
analysis and with the asymptotic formula for the largest eigenvalue is fully established. 

We believe that the various formulae mentioned above for the spectrum of the 
Hamiltonian may be of great utility in further analysis of second-order phenomena. 

2. Quantum dynamics of the second-harmonic generation 

As we have mentioned, second-harmonic generation is described by the Hamiltonian 

H = Ha + Hint (2.1) 

with 

Ha = hoata  + 2hwbtb Hi., = hg(btaz +bat’). (2.2) 
By using the standard bosonic commutation relations ( [a ,  at] = I ,  [b, bt] = I, 

[a, b] = 0) it is straightforward to check that 

[Ho. Hinr] = h20g[ata + 2btb, btu2 + bat’] 

= hzwg(--2nzbt + k z b t  + 2bat2,- 2bat2) = 0 (2.3) 
so, both are constants of motion. This allows us to factor out exp(-iHot/h) from the 
evolution operator and drop it. The common eigenstates of HO and Hint, with eigenvalues 
Eo = fiwN and Eht = hgA, respectively, are characterized through 

IN, A)’ = (%,nblN, A)’ In., nb) (2.4) 
n0.m 

“,+2nb=N 

with 

(2.5) 

where 10.0) is the vacuum state for both modes and n,, Itb = 0 ,  1,. . . . In this Fock basis, 
Hiot is non-diagonal. However, since n, + 2nb = N = constant, Ha splits the field space 
into orthogonal spaces that have [N/21  + 1 components, where [ N / 2 ]  means the integer 
part of N / 2 .  Thus, for a given N we can relabel the states (2.5) as 

(2.6) 
which form a complete set, and Hint is represented in this latter basis by the tridiagonal 
matrix of order ( [ N / 2 1 +  1) x ( [N/21+  1) [I91 

In,, nb) = IN - 2, k) 

/ 0 CO 0 ... ... \ 
(2.7) 
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where 

ck = J ( k  + 1)(N - 2k)(N - 2k - 1) 

It is easy to check that due to the properties of tridiagonal matrices, the eigenvalues 
A are distributed symmetrically with respect to zero, with one eigenvalue equal to zero if 
there are an odd number of them. 

The adoption of the Fock number-state basis does not accord well with a realistic 
representation of coherent laser light. Later we shall work with coherent states, that are 
expressed as number state superpositions. However, to start with let us assume that at f = 0 
the system is in the state IN, 0). To find the state evolution, we need the matrix elements 
of the evolution operator 

C ~ . r ( t )  = (N - 2k, kl exp(-iHi,,t/h)lN, 0) 

which can be written as 

(2.10) 

where Ai = Ao, . . . , A[N/ZI  are the eigenvalues and U is the unitary matrix that diagonalizes 
the interaction Hamiltonian matrix. If the eigenvalues are sorted from the lowest to the 
highest values, we have the symmetry relation [19] 

which makes the coefficients CN.k real when k is even and imaginary when k is odd. 
Many authors have carried out the diagonalization of HiDt numerically. However, we 

wish to draw attention to one important point which does not seem to have been stated in 
previous works on the subject: the largest possible eigenvalue of Hint for a fixed N follows 
a power law of the form (when N is high enough) 

(2.12) 

This has been carefully checked in all our numerical computations and can be recovered 
by a simple argument as follows: for N >> 1, the dominant contributions can be expected 
to correspond to large values of both n, and nb. Then both modes may be expected to~be 
close to the classical l i t  in which the associated operators a and b may be approximately 
replaced by classical c-numbers~ff and p, in such a way that 

N%ff2+2p2  A % 2 a 2 p .  (2.13) 

Then 

A X 2(N - 2fi2)p. (2.14) 

For a fixed N , ~  the maximum eigenvalue occurs when dA/dp = 0, which immediately gives 

01 = 2(N/6)'I2 fl  = (N/6)'I2 (2.15) 

from which the power law (2.12) follows. In numerical computations this scaling law works 
quite accurately even when N % 10 (see table 1). 

The important scaling law (2.12) will beconfirmed again, in adiffereut setting, in (3.11), 
and it will play an essential role in the analysis of the quasiclassical quantization rules and 
the discussion about them. 
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Table 1. Comparison between the exact maximum eigenvalue of Hi, for fixed n and the bound 
obwined using (2.19). 

N &cl) A!%-) 

10 16.613 17.213 
20 47.838 48.686 
30 88.404 89.442 
40 136.507 137.706 
50 191.109 192.450 
60 251.513 252.982 
70 317.208 318.794 
80 387.796 389.491 
90 462.959 464.758 

100 542.438 544.331 

Relative error 70 

3.61 
1.77 
1.17 
0.88 
0.88 
0.58 
0.50 
0.44 
0.39 
0.35 

The typical conditions for second-harmonic generation are a coherent state for the 
fundamental mode and the vacuum for the second-harmonic mode. Thus, we suppose 
the initial state of the form 

(2.16) 

(2.17) 

is the Poissonian weighting factor of the coherent state Iff) and [alz is the mean photon 
number. With this initial condition the resulting state is 

(2.18) 

with C N . k ( f )  given by (2.10). This series has been evaluated numerically in a number of 
papers showing a clear oscillatory behaviour that decays faster for higher n., so here we 
do not intend to give an extensive discussion of this problem. Rather, we wish to give an 
approximate analytic expression for the wavefunction. To this end, let us now expand in 
(2.16) the state IN,  0) in the basis IN.  A)‘ of eigenstates of Hint 

[NI21 

j=O 
IN, 0) = O j . N I N ,  A,)’. (2.19) 

The distribution probabilities l ~ j . ~ l ’ ,  which indicate the overlap between the state IN, 0) 
and the eigenstates IN, Aj)’, can be studied numerically. The central point, as discussed in 
detail in [15], is that for N high enough and N = 2k (even) this decomposition can be well 
approximated by considering only three eigenstates: zero and two of them (AI and -AI) 
distributed symmetrically with respect to zero and of maximum overlap, obtaining 

I @ d O ) )  = 12k.0) = ao.u1%0)’+a1,wl2~, AI) ’+~I .ZI’X -AI)’ 

I@&)) = a0 .~12k,O)’+a1 .~e  -igAlt 12k, A 1 ) ’ + a l , ~ e ~ ~ ~ ” l 2 k ,  -AI)’ .  

(2.20) 
where the coefficients of 12k, AI)’ and 12k, -A1)‘ are the same by symmetry. The time 
evolution of this state is 

(2.21) 

Analogously, when N = 2k + 1 (odd) we can accurately approximate the expansion by the 
two symmetric eigenvalues (A2  and -A’) of maximum overlap 
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Ih+k+l(O))= I=+ 1,O)  Z ~ Z , X + I I ~ ~ +  ~ , A z ) ’ + ~ z . ~ x + I I ~ ~ +  l,-Az)’ 
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(2.22) 
with a time evolution 

1+=+1(t)) = a~.u;+~ e-’g”z’lu( + 1 , ~ ~ ) ’ + a z . ~ ~ + ~  ei8”2‘12k + 1, -~z)’. 
The time evolution of the system is 

(2.23) 

(2.24) 

We can now give an approximate expression for the evolution of the second-harmonic field 

(nb)  = Cb&[2ao.zua;.~(u(, OlbtbluC, AI)’cos(gAit) 

as 
W 

k=O 
+’2&24~~,,(2k, Olb’blZk, -Ai)’Cos(gA1f) 
+2afa((u(, Ai Ibtb12k, -Ai)‘cos(2gAit) +a&{U(, OlbtbluC, 0)’ 

+~:(,(2k, Ailb’blZk, A I ) ’ + u ~ ~ , ( ~ ~ ,  -Ailbtb12k, -AI)’] 
m 

+ ~ b & + 1 [ ~ , ” , , + , ( 2 k  + 1, Az1btb12k + 1, -Ad cos(2gAzt) 
k=O 

+&+1{2k + 1,  Azlb’bl2k + 1, Az)’ 
+~&+1{2k + 1,  -Azlbtb12k + 1, -Az)‘] . (2.25) 

Here the time evolution is proportional to the cosines of gAlt, 2gAlt and gAzt. The pres- 
ence of these different frequencies implies the impossibility of monotonic growth of the in- 
tenstity as in the classical case, and clearly shows the oscillatory character of the quantum so- 
lution, interference among these components appears to be responsible for these oscillations. 

Moreover, the existence of small oscillations around some stationary value has been 
observed numerically for large times with significant decreases and oscillations at particular 
times, showing a kind of collapse-revival behaviour. The explanation of this behaviour 
is now straightforward by means of similar arguments to those for the Jaynes-Cummings 
model [ZO]. Using the actual values of the eigenvalues, we have plotted the evolution of 
the second-harmonic mode in figure 1, finding very good agreement with the numerical 
computations. 

Figure 1. Plots of the mean photon 
number in the second-Fonic  

. ._. .. ,. ’...’ ” . .. : mode versus r = gr, for n. = 4 .,.. ... .. 
(broken curve) and n. = 16 (full 

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 culve). Inbothc3seswehaveused 

. _  . . 1.51?; f! ”’ f \,,.-...,. ]\ ?,.,;;y! 
0.0 

z the approximation (2.25). 
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3. Quasidassical evolution of the second-harmonic mode 

3.1. Canonical variables 

We shall introduce the Hermitian operators x j .  p j ( j  = 1.2) through 

R F Alvarez-Estrada et a1 

and so on for at and bt. One has [x j ,  pj] = G3 and all other commutators vanish. We 
can always set p j  = -G3a/axj. Note that there is no compelling reason to treat xj as 
position operators for photons in ordinary space. Rather, xj and pj  should be identified as 
proportional to the amplitudes of the two quadrature phases of the electric field, which may 
be measured experimentally by means of optical homodyne detection [21]. 

In order to approach the classical limit fi + 0 properly, we shall introduce a new 
coupling constant f defined by 

fig = - d i h 3 / 2  f . (3.2) 

By substituting in the Hamiltonian of the system one gets 

P: fo2 2 Pi (242  2 3 x2 - -fiw 
21+T+- 2 2 (3.3) 

Ho = - + --x 

Hi,, = - f [ ( 20 ) "2 (04  - w-'p3xz + (2w)-1/2(xlpl + P l X l ) P Z ]  . 
We shall consider the classical l i t  of this quantized model. Then, the operators xj and 
p j  become classical (c numbers) commuting variables we shall denote by xj and ~ j , ~ .  
Consequently the operators in (3.3) become the classical Hamiltonians 

(3.4) 
Hiny = - f  [(2~)'/~(wx: - o-'P?,.Jx2 + (20)-1/22~1 P I . ~ P Z , ~ ]  

respectively. One can easily check that the classical Poisson bracket of H o , ~  and Hi.,, 
vanishes. 

We shall obtain some approximate analytical representations for the eigenvalues 
and Einr.c in the quasiclassical limit (the subscript c will remind that one is calculating only 
in this limit). In so doing, use will be made of the generalization of the Bohr-Sommerfeld 
quantization rules due to Einstein [22], Brillouin [23] and Keller [24]. We shall limit 
ourselves to giving the quasiclassical representations which yield and Ei.r.c implicitly, 
and to study numerically their consistency with the results of the exact quantum analysis. 
This quasiclassical analysis has its own interest, as it is a highly non-hivial application of 
the quantization rules and may be useful for further studies of the system at hand. 

3.2. Classical solutions for momenta and their structure 

We start by setting 

H0.c = E0.e Hints = Eiot.c. (3.5) 
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Equations (3.5) constitute a system that enables to determine ~ 1 . ~  and ~ 2 . ~  in terms of x1 
and xz. Notice that ~ 1 , ~  is obtained by solving a quartic equation. One finds 

(3.7) 

1/2 2 B1 = 2E0,c - 02.: - (20)2x,z B2 = E,,., + f o ( 2 w )  XlX2. 

For a given  EO.^ > 0, a necessary condition for the existence of allowed classical 
trajectories is Bl 0 for any XI, XZ,  as (3.5) and (3.7) show. Notice that E1 = 0 (which 
represents an ellipse in the ( X I .  x2) plane) implies that p ~ . ~ ( u ,  p )  = p2Ju. p )  = 0 and, for 
the sake of consistency, BZ = 0 also. 

For classical trajectories to exist at ( X I ,  x2) p?,, should be real and non-negative and 
p;,, c BI . No further conditions on ~ 2 . ~  are required; 

For a given 0) and a suitable Ehr& O), figure 2 displays in the (x1,xz)-plane: 
(i) The region B1 > 0 (that is, the interior of the ellipse BI = 0). 
(ii) The curves C+ = 0 and C- = 0. 
(iii) The curve B2 = 0. 
Except for some specific features, the detailed form of those curves is not very relevant. 
Each one of the curves (ii) and (iii) is always symmetric about the xz-axis. The interest in 
curve (iii) will be appreciated soon. 

x 2  
D t ( - )  Di(+) 

Figure 2. The classically allowed regions R+, R- are limited by the curves C.. = 0 and 
C+ = 0. The curve 8 2  = 0 (indicated in the figure as dotted) always lies below C- = 0 and 
above C+ = 0 and it intersects the ellipse BI  = 0 at the points D1(+). Dz(+) (right branch) 
and DI(-) and Dz(-) (left branch). 
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The solutions of the system 

Bi=O Bz=O (3.8) 
correspond to the four points Dl(+), Ox(+), &(-) and &(-) in figure 2. The system 
(3.8) yields 

A study of the explicit solutions of (3.9) is now in order. The main conclusions may be 
summarized as follows. 

First, the intersections of B1 = 0 and Bz = 0 give rise to four different points (as in 
figure 2) only if 

(3.10) 

The points &(+) and &(+) coincide with each other (as do the symmetric points 
Dl(-) and &(-) with each other) when 

and, in this case, the double solution of (3.9) yields for &(+) and &(+) 

(3.11) 

(3.12) 

The system (3.8) has no acceptable solution if E& > $$E:,,. In such a case, the 
intersection of the ellipse Bl = 0 and the curve Bz = 0 is empty. 

For Einr.c fulfilling (3.10), the allowed classical trajectories correspond to points inside 
the regions R+, R- limited by C+ = 0 and C- = 0, where A > 0. Note that R+ is obtained 
through reflection symmetry from R- with respect to the xz-axis. 

An important point is that the condition (3.1 1) coincides precisely with the scaling law 
(2.12) when one uses = fiwN and Einc.c = -21’zii3/2 f Am=. 

We shall now concentrate on the (x1,x&plane and, in particular, on the domain 
R+ (with x1 =- 0) inside of which A > 0 (with Ejnr,c < 0, which is not an essential 
reshiction). Then, we consider three additional copies of them. Altogether, they define a 
four-sheeted (XI, x2)  space (the so called covering space 1241). We shall use (U, p )  and 
plJu, p )  to characterize and distinguish these sheets. We shall denote by C-(u, p )  = 0 
and C+(u, p )  = 0 the curves in the sheet (U, p )  along which A = 0, and by R+(u, p )  the 
domain which is enclosed by these two curves. 

A careful study of pl.c(u, p )  and p~.&, p )  in the various sheets has been undertaken 
in order to connect the latter among themselves whenever possible in such a way that these 
functions vary in a continuous way. In other words, these functions become univalued in 
the covering space. The results of such an analysis are the following: 

(i) The two domains R+(+ ,+)  and R+(+,-) can be joined across C-(+,+) = 
0, C-(+, -) = 0 and across C+(+, +) = 0, C+(+, -) = 0. The union of R+(+, +) 
and R+(+, -) will be named R+(+). 

(ii) The same holds true for the domain R+(-, +) and R+(-, -) across C-(-, +) = 
0, C(-, -) = 0 and across C+(-, +) = 0, C+(-, -) = 0. The union of R+(-, +) 
and R+(- ,  -) will be denoted by R+(-). Both R+(+) and R+(-) are displayed in 
figure 3(a). 
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Figure 3. (a) The regions R+(-) (upper) and R+(+) (lower) are displayed. The. notation for 
the different curves is as follows: 3: C+(-, -) = 0: 4 C+(-, +) = 0; 5:  C-(-. -) = 0; 6: 

The connections between R+(+) and R+(- )  across the curves 8 2  = 0 (indicated as dotted and 
&numbered) are also given. The closed curve r2 is also displayed. The symbals a,  b. c, d 
indicate how the various p m  of F2 are connected to one another. (b) and (c)  display the 
ropologicd smcwre of the covering space R+(+) U R+(-) .  R+(+) and R+(-) are joined 
across Bz = 0 (also drawn as dotted and unnumbered) as indicated in the main text. Notice that 
I" is not continuously connected to 2" neither is 1' to 2'. 

C_( - ,+ )=O;7  c~(t.-)=o:8: C _ ( + . + ) = % 9  C+(+,-)=0;10 C+(+,+)=O. 

(iii) R+(+) and R+(-) are continuously connected (and, hence joined) to each other 
across the curves Bz = 0 in R+(+, -) and Bz = 0 in R+(-, -) (in both of which 
~ 1 , ~  = 0). Specifically, the regions 1" and 2' of sheets U = -p = + and U = p = -, 
respectively, should be joined to each other, and similarly, the regions 1' and 2" of 
sheets U = -p = + and U = p = -, respectively, should be continuously connected 
to each other (see figure 3(a)). In this way, ~ 2 . ~  is guaranteed to vruy continuously 
whenever p ~ . ~  vanishes. 

We call R+(+) U I?+(-) the union of both R+(+) and R+(- )  across the curve Bz = 0. 
Its topological structure is shown in figures 3(b) and (c) .  The four-sheeted ( X I .  xz) space 
with connections among the various sheets is the covering space for carrying out the 
semiclassical quantization of the system, which we shall investigate in the next section. 

We emphasize that the various connections among different sheets as displayed in 
figure 3 are dictated by Keller's general prescription. We also stress that the developments of  
this subsection are technically unavoidable in order to properly formulate the quasiclassical 
quantization rules. 

3.3. Quasiclassical quantization rules 

Let rj ( j  = 1,2) be two suitable closed and topologically independent paths (that is, none of 
them can be continuody deformed so as to coincide with the other one) in R+(+) UR+(-). 
A typical choice for rz and rl is displayed through figures 3(a) and 4. It will be assumed 
that rz cannot be infinitesimally close to D,(+) or &(-). Such closed curves are described 
by the equations yj(x1. x2) = 0. 

We are now ready to apply the quantization rules in order to provide the implicit 
quasiclassical analytical formulae for EO,, and Eiat.e, as announced before. 
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Figure 4. The closed curye rl is displayed using 
the same notation as in figure 3(0). Notice that 

paSSe~ by both D i ( t )  and DZ(t). Apart of rl 
lies in the region I” in the sheet U = -p = 
+ (where ~ 2 , ~  > 0). while the other part is 
contained in region 2” of sheet o = p = - 
(where pzC c 0). , 

--- 
2. I” D*(+) for simplicity Furyes 4 and 8 are omitted. rl 

The quantization rules read as 

(3.13) 

where pI,c and are given through (3.6) and the integrations extend along the whole 
closed paths rj. In turn, nj are arbitrary positive integers and pj are fixed integers called 
Maslov indices (or, more generally, Berry phases). 

It is particularly convenient to choose rl so that y l ( x 1 . x ~ )  = 0 is precisely B2 = 0. 
Equations (3.6) then imply that ~ 1 , ~  = 0 along rl, while p ~ . ~  = fB;l2 in the pans of rl 
lying in I“, 2”, respectively. 

By using y = x: as integration variable, the left-hand side of (3.13) for j = 1 becomes 
an elliptic integral over y (Einc,c < 0): 

where 

(3.1.5) 

with XI”’ the two positive solutions of (3.9) which corresponds to Dh(+), h = 1,2. Notice 
that x:) z x f ) ,  so that y @ )  > y ( ’ ) .  

We argue that @I = 0 in (3.14). In fact, when (3.11) holds, one finds that 

(3.16) 

and, moreover, that the square root in the integrand of the left-hand side of (3.14) vanishes. 
For consistency, the right-hand side of (3.14) requires nl = 0 and hence pi = 0. When 
(3.10) holds, (3.14) is valid for a finite set of non-negative values for the integer nl 
(with p1 = 0). 

We introduce the dimensionless variables z ,  e ,  and U through 

Then, equations (3.14), (3.1.5) and (3.9) become, respectively, 

(3.17) 

(3.1 Sa) 



(3.18b) 

( 3 . 1 8 ~ )  

Notice that the condition e' = corresponds to (3.11) and that z(l) and z ( ~ )  are the two 
positive solutions of the cubic equation for z .  

We can now compare with the exact solutions of the quantum Hamiltonian. This can 
be accomplished upon plugging the exact eigenvalues EO and E;, obtained in section 2 
into (3.lSa), identifying approximately EO and Ei,, with EQ and Eint,c for suitably large 
N (say, N 2 12) (note, however, that in the visible range this corresponds to a typical 
intensity of 3 x W cm-*) and evaluating numerically the integral in (3.180) in order 
to see whether it equals an integer, namely, the quantum number n1. In figure 5 we can 
see this fitting for N = 56. One may then conclude that the quasiclassical representations 
are consistent with the results obtained for the exact quantum eigenvalues provided that 
N > 12 with an error not greater than 2%. 

An interesting consequence is then that ( 3 . 1 8 ~ )  yields the eigenvalue Ehl in terms of 
EO = AwN and nl in the quasiclassical l i t .  

A'qualitative study of the left-hand side of (3.18a) for j = 2, using the values of 
p&, p ) .  p ~ . ~ ( u ,  p )  seems to indicate that the former is different from zero, as it should 
be. As yet, we have not found any special curve rz such that it simplifies to any previously 
known (elementary or non-elementary) integral. Anyway, it is less relevant~in practice than 
the integral for j = 1, which already yielded the relationship among EO. Ei, and nl. 

Finally, we shall provide some approximate formulae for the wavefunctions in this 
quasiclassical regime. We anticipate that our results have a rather limited scope. 

In fact, while reliable one-dimensional quasiclassical wavefunctions are well known 
in all regions, elaborate formalisms yielding practical wavefunctions in more than one 
dimension appear to be lacking (leaving aside some mathematical studies which seem to be 
rather difficult to apply [ZS-ZSI). 

The univaluedness and the connection formulae for the quasiclassical wavefunction in 
one dimension have been well understood and controlled. The univaluedness amounts to 
the quasiclassical quantization rules, which yield the, eigenvalues in this approximation. 
Unfortunately, for systems in two or more dimensions, like the two-oscillator model treated 
in the present work, the situation is far more complicated and, hence, the available techniques 
have a more limited scope. In this case a crucial matter, namely, the generalization of the 
connection formulae, still appears to stand as an open problem. 
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Let the wavefunction @(xt,xz) be a common eigenfunction of both operators HO and 

Ha@ = EO@ Him@ = EintP. (3.19) 

In what follows, let A denote a given point on any of the curves C+ = 0 or C- = 0. 
Also, let X = (XI, XZ) be a generic point in the sheet (U, p )  inside R+(u, p ) ,  and ri a 
suitable open curve which starts at A and ends at X and lies entirely inside R+(u, p )  in the 
(U, p )  sheet. 

In a rather direct analogy with the well known WBK solution in one spatial dimension, 
we can write the following approximate formula for @ inside R+(u, p ) :  

Him 

where pi(xl, xz) = pi is a real non-negative function. 
In order to characterize pi let us look for the solutions of (3.19) in the form 

(3.20) 

(3.21) 

where S, is real and remains finite as ft -+ 0. After replacing (3.21) in (3.19), separating real 
and imaginary parts and letting fr + 0, one finds that pl.c = aSc/axl and pz.e aS,/axz 
satisfy (3.5). With the same substitutions, the right-hand sides of (3.6) allow us to write 

X 

sc = I, [PI.& P) dxl + n&. P) b.21 (3.22) 

the integral being performed along si. The above separation between real and imaginary 
parts also yields the following system that characterizes pi(x1.x2): 

(3.23b) 

Notice that (3.23~) appears to be a continuity equation in (XI, xZ)-space. pi could eventually 
be interpreted as some sort of probability density (but beware that XI and x2 do not represent 
position for photons in ordinary space). 

The solutions of (3.19) when X lies outside both R+ and R- (in any sheet) can also 
be written immediately, in a formal analogy with (3.20). Such a solution tums out to 
be rather difficult to analyse, depending on the signs of the imaginary parts of both 
and ~ 2 . ~ .  The possibility of tunnelling Bffects between R+ and R- (in each sheet), which are 
allowed in principle, adds further difficulties. A detailed analysis of how the wavefunction 
inside R+(G, p)  given in (3.20) would be connected to the quasiclassical solution outside 
R+(u, p )  definitely lies outside the realm of the present paper. Actually it would call for 
elaborate formalisms yielding WBK solutions and their connection formulae in more than 
one dimension, which appear to be lacking at present, as commented above. 

To finish, we notice that (3.20) suffices to derive the quantization rule (3.13), which 
provides a clear check of consistency for the former. In fact, by choosing a suitable closed 
curve in the four-sheeted covering space and by imposing single-valuedness to (3.20) and 
by following Keller’s argument, one arrives at (3.13). 



A quaricl&sical analysis of second-harmonic generation 345 1 

4. Conclusions 

We have examined the asymptotic behaviour of second-hannonic generation. The quantum 
dynamics of the model has been studied resorting to the technique of tridiagonal matrices. 
The important point is the largest possible eigenvalue for the interaction Hamiltonian scales 
as N", where N is the total photon number. 

In the quasiclassical regime, we have derived two general equations yielding the 
specmm of the problem. In this context, second-harmonic generation is a highly non- 
trivial application of the quasiclassical quantization rules, since the covering space of the 
problem shows an intriguing topological structure. These equations are fairly consistent for 
suitably large quantum numbers with the exact quantum results. We have also provided an 
approximate analytic expression for the wavefunction of the system. 
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